Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
The Korean Journal of Parasitology ; : 55-59, 2013.
Article in English | WPRIM | ID: wpr-216694

ABSTRACT

Twelve 924 bp cytochrome c oxidase subunit 1 (cox1) mitochondrial DNA sequences from Taenia asiatica isolates from Thailand were aligned and compared with multiple sequence isolates from Thailand and 6 other countries from the GenBank database. The genetic divergence of T. asiatica was also compared with Taenia saginata database sequences from 6 different countries in Asia, including Thailand, and 3 countries from other continents. The results showed that there were minor genetic variations within T. asiatica species, while high intraspecies variation was found in T. saginata. There were only 2 haplotypes and 1 polymorphic site found in T. asiatica, but 8 haplotypes and 9 polymorphic sites in T. saginata. Haplotype diversity was very low, 0.067, in T. asiatica and high, 0.700, in T. saginata. The very low genetic diversity suggested that T. asiatica may be at a risk due to the loss of potential adaptive alleles, resulting in reduced viability and decreased responses to environmental changes, which may endanger the species.


Subject(s)
Animals , Humans , Asia/epidemiology , Cluster Analysis , Electron Transport Complex IV/genetics , Genetic Variation , Genotype , Molecular Sequence Data , Phylogeography , Protein Subunits/genetics , Sequence Analysis, DNA , Taenia/classification , Taeniasis/epidemiology
2.
The Korean Journal of Parasitology ; : 197-201, 2013.
Article in English | WPRIM | ID: wpr-103954

ABSTRACT

A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.


Subject(s)
Animals , China , Cluster Analysis , Cysticercosis/parasitology , DNA, Helminth/chemistry , DNA, Mitochondrial/chemistry , Electron Transport Complex IV/genetics , Genetic Variation , Goat Diseases/parasitology , Goats , Phylogeny , Polymerase Chain Reaction , Protein Subunits/genetics , Sequence Analysis, DNA , Sheep , Sheep Diseases/parasitology , Taenia/classification
4.
Article in English | IMSEAR | ID: sea-135366

ABSTRACT

After De’s pivotal demonstration in 1959 of a diarrhoeogenic exo-enterotoxin in cell-free culture filtrates from Vibrio cholerae (of classical biotype), much insight has been gained about cholera toxin (CT), which is arguably now the best known of all microbial toxins. The subunit structure and function of CT, its receptor (the GM1 ganglioside), and its effects on the cyclic AMP system and on intestinal secretion were defined in the 1970s, and the essential aspects of the genetic organization in the 1980s. Recent findings have generated additional perspectives. The 3D-crystal structure of CT has been established, the CT-encoding operon has been shown to be carried by a non-lytic bacteriophage, and in depth knowledge has been gained on how the bacterium controls CT gene expression in response to cell density and various environmental signals. The mode of entry into target cells and the intracellular transport of CT are becoming clearer. CT has become the prototype enterotoxin and a widely used tool for elucidating important aspects of cell biology and physiology, e.g., cell membrane receptors, the cyclic AMP system, G proteins, as well as normal and pathological ion transport mechanisms. In immunology, CT has emerged as a potent, widely used experimental adjuvant, and the strong oral-mucosal immunogenicity of the non-toxic B-subunit (CTB) has led to the use of CTB as a protective antigen together with killed vibrios in a widely licensed oral cholera vaccine. CTB has also been shown to promote immunological tolerance against certain types of mucosally co-administered antigens, preferably tissue antigens linked to the CTB molecule; this has stimulated research and development to use CTB in this context for treatment of autoimmune and allergic diseases. In summary, in the 50 years after De’s discovery of CT, this molecule has emerged from being the cholera patient’s “foe” to also becoming a highly useful scientist’s “friend”.


Subject(s)
Cholera Toxin/chemistry , Cholera Toxin/genetics , Cholera Toxin/metabolism , Cholera Vaccines/immunology , Humans , Immunity, Mucosal/immunology , Models, Molecular , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/genetics , Vibrio cholerae/chemistry , Vibrio cholerae/pathogenicity
5.
Journal of Korean Medical Science ; : 1058-1063, 2009.
Article in English | WPRIM | ID: wpr-203389

ABSTRACT

Blowflies, especially species belonging to the subfamily Luciliinae, are the first insects to lay eggs on corpses in Korea. Fast and accurate species identification has been a key task for forensic entomologists. Because conventional morphologic identification methods have many limitations with respect to forensic practice, molecular methods have been proposed to identify fly species of forensic importance. To this end, the authors amplified and sequenced the full length of the cytochrome c oxidase subunit I (COI) gene of the Luciliinae fly species collected in Korea. The results showed the COI sequences are instrumental in identifying Luciliinae fly species. However, when compared with previously reported data, considerable inconsistencies were noted. Hemipyrellia ligurriens data in this study differed significantly from two of the five pre-existing data. Two closely related species, Lucilia illustris and Lucilia caesar, showed an overlap of COI haplotypes due to four European sequences. The results suggest that more individuals from various geographic regions and additive nuclear DNA markers should be analyzed, and morphologic identification keys must be reconfirmed to overcome these inconsistencies.


Subject(s)
Animals , Humans , Base Sequence , Diptera/classification , Electron Transport Complex IV/genetics , Forensic Medicine/methods , Haplotypes , Korea , Molecular Sequence Data , Phylogeny , Postmortem Changes , Protein Subunits/genetics , Sequence Analysis, DNA
6.
Journal of Korean Medical Science ; : 146-151, 2009.
Article in English | WPRIM | ID: wpr-8098

ABSTRACT

This study was designed to determine whether early gabapentin treatment has a protective analgesic effect on neuropathic pain and compared its effect to the late treatment in a rat neuropathic model, and as the potential mechanism of protective action, the alpha2delta1-subunit of the voltage-dependent calcium channel (alpha2delta1-subunit) was evaluated in both sides of the L5 dorsal root ganglia (DRG). Neuropathic pain was induced in male Sprague-Dawley rats by a surgical ligation of left L5 nerve. For the early treatment group, rats were injected with gabapentin (100 mg/kg) intraperitoneally 15 min prior to surgery and then every 24 hr during postoperative day (POD) 1-4. For the late treatment group, the same dose of gabapentin was injected every 24 hr during POD 8-12. For the control group, L5 nerve was ligated but no gabapentin was administered. In the early treatment group, the development of allodynia was delayed up to POD 10, whereas allodynia was developed on POD 2 in the control and the late treatment group (p<0.05). The alpha2delta1-subunit was up-regulated in all groups, however, there was no difference in the level of the alpha2delta1-subunit among the three groups. These results suggest that early treatment with gabapentin offers some protection against neuropathic pain but it is unlikely that this action is mediated through modulation of the alpha2delta1-subunit in DRG.


Subject(s)
Animals , Male , Rats , Amines/administration & dosage , Analgesics/administration & dosage , Calcium Channels/genetics , Cyclohexanecarboxylic Acids/administration & dosage , Disease Models, Animal , Injections, Intraperitoneal , Ligation , Neuralgia/drug therapy , Pain Measurement , Protein Subunits/genetics , Rats, Sprague-Dawley , Spinal Nerves/surgery , Up-Regulation , gamma-Aminobutyric Acid/administration & dosage
7.
Genet. mol. res. (Online) ; 6(4): 766-798, 2007. ilus, tab
Article in English | LILACS | ID: lil-520065

ABSTRACT

Flagella are constructed and maintained through the highly conserved process of intraflagellar transport (IFT), which is a rapid movement of particles along the axonemal microtubules of cilia/flagella. Particles that are transported by IFT are composed of several protein subunits comprising two complexes (A and B), which are conserved among green algae, nematodes, and vertebrates. To determine whether or not homologues to members of the IFT complex proteins are conserved in Leishmania spp, we scanned genomes, transcriptomes and proteomes of Leishmania species in a search for putative IFT factors, which were then identified in silico, compared, cataloged, and characterized. Since a large proportion of newly identified genes in L. major remain unclassified, with many of these being potentially Leishmania- (or kinetoplastid-) specific, there is a need for detailed analyses of homologs/orthologs that could help us understand the functional assignment of these gene products. We used a combination of integrated bioinformatics tools in a pathogenomics approach to contribute to the annotation of Leishmania genomes, particularly regarding flagellar genes and their roles in pathogenesis. This resulted in the formal in silico identification of eight of these homologs in Leishmania (IFT subunits, 20, 27, 46, 52, 57, 88, 140, and 172), along with others (IFTs 71, 74/72, and 81), as well as sequence comparisons and structural predictions. IFT, an important flagellar pathway in Leishmania, begins to be revealed through screening of trypanosomatid genomes; this information could also be used to better understand fundamental processes in Leishmania, such as motility and pathogenesis.


Subject(s)
Animals , Computational Biology/methods , Flagella/genetics , Genes, Protozoan , Genome, Protozoan , Leishmania/genetics , Amino Acid Sequence , Biological Transport , Conserved Sequence , Cilia/genetics , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Protein Subunits/genetics , Protein Subunits/chemistry
8.
J Biosci ; 2006 Dec; 31(5): 557-64
Article in English | IMSEAR | ID: sea-111240

ABSTRACT

Pol zeta, Pol eta, Pol iota, Pol kappa and Rev1 are specialized DNA polymerases that are able to synthesize DNA across a damaged template. DNA synthesis by such translesion polymerases can be mutagenic due to the miscoding nature of most damaged nucleotides. In fact, many mutational and hypermutational processes in systems ranging from yeast to mammals have been traced to the activity of such polymerases. We show however, that the translesion polymerases are dispensable for repeat-induced point mutation (RIP) in Neurospora crassa. Additionally, we demonstrate that the upr-1 gene, which encodes the catalytic subunit of Pol zeta, is a highly polymorphic locus in Neurospora.


Subject(s)
Base Sequence , DNA Damage , DNA Replication , DNA-Directed DNA Polymerase/genetics , Fungal Proteins/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Neurospora crassa/enzymology , Open Reading Frames , Point Mutation , Polymorphism, Genetic , Protein Subunits/genetics , Sequence Analysis, DNA
9.
Experimental & Molecular Medicine ; : 1-12, 2004.
Article in English | WPRIM | ID: wpr-190980

ABSTRACT

Hypoxia-inducible factor (HIF-1) is an oxygen-dependent transcriptional activator, which plays crucial roles in the angiogenesis of tumors and mammalian development. HIF-1 consists of a constitutively expressed HIF-1beta subunit and one of three subunits (HIF-1alpha, HIF-2alpha or HIF-3alpha). The stability and activity of HIF-1alpha are regulated by various post-translational modifications, hydroxylation, acetylation, and phosphorylation. Therefore, HIF-1alpha interacts with several protein factors including PHD, pVHL, ARD-1, and p300/CBP. Under normoxia, the HIF-1alpha subunit is rapidly degraded via the von Hippel-Lindau tumor suppressor gene product (pVHL)- mediated ubiquitin-proteasome pathway. The association of pVHL and HIF-1alpha under normoxic conditions is triggered by the hydroxylation of prolines and the acetylation of lysine within a polypeptide segment known as the oxygen-dependent degradation (ODD) domain. On the contrary, in the hypoxia condition, HIF-1alpha subunit becomes stable and interacts with coactivators such as p300/CBP to modulate its transcriptional activity. Eventually, HIF-1 acts as a master regulator of numerous hypoxia-inducible genes under hypoxic conditions. The target genes of HIF-1 are especially related to angiogenesis, cell proliferation/survival, and glucose/iron metabolism. Moreover, it was reported that the activation of HIF-1alpha is closely associated with a variety of tumors and oncogenic pathways. Hence, the blocking of HIF-1a itself or HIF-1alpha interacting proteins inhibit tumor growth. Based on these findings, HIF-1 can be a prime target for anticancer therapies. This review summarizes the molecular mechanism of HIF-1a stability, the biological functions of HIF-1 and its potential applications of cancer therapies.


Subject(s)
Humans , Alternative Splicing , Gene Expression Regulation , Genetic Therapy , Growth Substances/metabolism , Protein Isoforms/chemistry , Protein Subunits/genetics , Signal Transduction/physiology , Transcription Factors/chemistry , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL